top of page

Grupo de Sarcoma de Partes Moles

Público·47 membros
Christopher Morgan
Christopher Morgan

STEINBERG Absolute VST Instrument Collection Torrent

Description : A collection of virtual instruments from Steinberg that includes tools such as HALion v6.3.1, Retrologue v2.2.20, Padshop v2.0.1, The Grand v3.2.0, Groove Agent v5.0.20, HALion Sonic v3.3.1 based modules: Symphonic Orchestra , Iconica Opus, Skylab, Anima, Voltage, Auron, Dark Planet, Triebwerk, Hypnotic Dance, Vibrant and many others

STEINBERG Absolute VST Instrument Collection Torrent

Download Zip:

The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) explosions and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z 2-3). In this study, we use the EPIC and RGS instruments on board XMM-Newton to measure the abundances of nine elements (O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) from a sample of 44 nearby cool-core galaxy clusters, groups, and elliptical galaxies. We find that the Fe abundance shows a large scatter (20-40%) over the sample, within 0.2r500 and especially 0.05r500. Unlike the absolute Fe abundance, the abundance ratios (X/Fe) are uniform over the considered temperature range (0.6-8 keV) and with a limited scatter. In addition to an unprecedented treatment of systematic uncertainties, we provide the most accurate abundance ratios measured so far in the ICM, including Cr/Fe and Mn/Fe which we firmly detected (>4σ with MOS and pn independently). We find that Cr/Fe, Mn/Fe, and Ni/Fe differ significantly from the proto-solar values. However, the large uncertainties in the proto-solar abundances prevent us from making a robust comparison between the local and the intra-cluster chemical enrichments. We also note that, interestingly, and despite the large net exposure time (4.5 Ms) of our dataset, no line emission feature is seen around 3.5 keV.


Bem vindo ao grupo! Você pode se conectar com outros membros...


bottom of page